An Introduction & Guide to JALV2

Contents

INEFOAUCTION ..ttt ettt eeeeeeees 4
Chapter 1. Definitions and CONVENTIONS.uuuuiie s e e e e e e s e e e e e e e e e e aeeeeeas 5
R B 1< 1T v o] o T T ST PP P PP TOPPUPPPPPPPN 5
I 00101 V7=T o1 o) o L3OO PR 6
Chapter 2. Variables, CoONStants, AlIASEScceeeiveiiiiiiiiieeeeeeeiiiieee e e e e et e e e e e e e e e aataee e e e e e e sassanaeeaes 7
0 I Y o 1= L OO 7
W A\ - 1P 7

P N (T olo T o L PP 8
2.4, VarableS ...t 9
2.5, CONSTANTS ittt e et e e ra e 11
2.5.2. UNN@MEA CONSTANTS i e aeaaaaees 11
2.5.2. NAMEA CONSTANTS ... eaeeeeeeeeeaeeeaeeeeeees 12
2.5.3. String Literals (introduced With JALV2.4D)....uuuieieeiiieeeiiee et e 13

P A\ I =T O PP PP PP PPP PP PPPPPPPPPPPPPPPR 13
Chapter 3. Operators, Casting, EXpressions, Castingcceuuuiiiieeeerieeiiiiieeeeeeeeeeviiiieeeeeeeeeeranne s 14
I I O o 1= - | o] T PSPPI 14
R 6= 1] o | o = S TP PP UPPT PP 15
e R o g o] (TS o T PP PSP 16
Chapter 4. FIOW CONIOl....... ettt e e et e e e et e e e e et e e e sata e e e st e eeearaaaaes 17
T = 1 L 1 G 17
B2, CASE ... s 17

T T L0] S 18
A4 FOREVER ...ttt s 18
N | TP 19
B8, REPEAT ...ttt s 20
L7 WHILE L. e e 20
Chapter 5. Other KEYWOIUS.uuui i eeeeeeeiicee e e et e et e e e e e e ettt s e e e e e e eee ittt e e e eeeeessnanneeens 21
5.0 ASSERT ..ttt ittt s 21
5.2 INCLUDE ...ttt ettt ettt bttt s 21

O Y (= el o =T o 1= = (] o = 2PN 21
5,300 _DEBUG .. e aaeaeeeaaaas 21
5.3 ERROIR e e e e e e e e e e e e e e aaaaaaaaas 22
5033 W ARN L e aaaaaaaaaas 22

Chapter 6. Sub-programs: Procedures and FUNCLIONScoiiiiiiiiiiiiiie et 23

Chapter 7. PSEUO-VAriabIes e e e e e e e e e e 25
(O 0T o) (=T Lo =T VT o) iU 26
(0o T o] 1T g R = T Ut 27
Chapter 10. ASSEMDIY....coue it e e et e e et e e e et it e e e e et e eesasaeeestaeeaearanaaees 28
10.1. AVIlable OP-COUES. ...ceiieieeeeeee e 29
L0 0o T 41 g1 o T 1Y/ =T o L PP PPTPPR 30
10.3. Data DirECHIVES. ..cceen ettt ettt et e e e e e e e e n e e e nenes 31
Chapter 11 BUilt-in FUNCHIONS. ... e e e e e e e e e e e e e e e e e e e aeaeeas 32
11.1. Multiplication, Division, Modulus DiVISIONccuuiiiiiiiiiiiiiiie e 32
11.2. Floating POiNt OPEratioNnSciiiiiii et e et e e et e e e et e e e e et eeseannns 32
i S VY Yol o (1 1Y (=37) SR 32

Introduction

JALisa highlevel language designed to hide the general nuisance of programming a MicroChip PIC
processor. Itis derived from the original JALby Woutervan Ooijen (see
http://www.voti.nl/jal/index.html), whichisloosely based on Pascal.

JALis not case sensitive.

http://www.voti.nl/jal/index.html

Chapter 1. Definitions and Conventions

1.1. Definitions

The following abbreviations are used throughout this guide:

bit
A bitwithinabyte, 0 <= bit<=7
Comment
Comments begin with either"--" or";" and continue through the end of the line.
constant
A numericconstant.
expression
An expressionisasequence of values and operations.Expressions are subdivided into:
cexpr-- constant expression
An expression that can be fully evaluated at compile time. Forexample 1+ 2.
expr-- any expression.
An expression is anything that evaluatestoavalue, forexample:b+c, x+ 1, etc.
lexpr -- logical expression
A logical expression. This differs froman expressionin thatthe resultis0if the
expressioniszero,and 1if the expressionis anything otherthanO.
identifier
Identifiesavariable, constant procedure, function, label, etc. Must begin with aletteror' '
followed by any number of of letters (a-z), digits (0-9), or'_'. Note that identifiers beginning
with'_' are reserved forthe compiler.
program
A programis simply a sequence of statements. Unlike otherlanguages, inJAL, if the
execution runs out of statements, the processor will be puttosleep.
scope

Scopeisthe ‘visibility' of an identifier. Each statement_block creates a new scope. Anything
declared within this scope will not be visible once the scope ends.

A variable can be redefinedin ablock as follows:

VAR BYTE x, =z
IF (x) THEN
VAR WORD x, y ; all references to x will refer
; to this definition

END IF

VAR WORD x ; this is illegal because x already exists

statement
A single assignment, definition, control (BLOCK, CASE, IF) orlooping (FOR, FOREVER, REPEAT, WHILE).

statement_block
A sequence of statements. Variables, constants, procedures, and functions definedina
statement_block will not be visible outside of the statement_block.

token
The JAL compilerseesonlyastream of tokens. An entire program can be written withoutany line

breaks or extra spaces, except of course for comments which are terminated by and end of line.

var— variable

1.2. Conventions

The following notational conventions are used throughout this guide:

{a]|b]|c}--oneof
must be one of a,b,c

KEYWORD -- A JALv2 keyword
Upper case denotesalALv2 keyword

.. --literal
Anything between the quotes must be typed exactly.

[...]—optional
Anything between the bracketsis optional.

Chapter 2. Variables, Constants, Aliases

2.1. Types

The following are the list of types understood by the JALv2 compiler.

Table 2-1. JALv2 Built-in Types

Type Description Range

BIT? 1 bitbooleanvalue 0.1

SBIT! 1 bitsignedvalue -1..0

BYTE?! 8 bitunsignedvalue 0..255

SBYTE!? 8 bitsignedvalue -128..127

WORD 16 bit unsignedvalue 0..65,535

SWORD 16 bit signed value -32,768..32,767

DWORD 32 bit unsigned value 0..4,294,967,295

SDWORD 32 bit signedvalue -2,147,483,648..2,147,483,647

FLOAT! floating pointvalue +/-107-44..10"38
lbase types

The larger types, [S]WORD, [SIDWORD are simply derived from the base types using the width
specifier. Forexample, WORD s equivalent to BYTE*2, the latercan be used interchangeably with
the former.

Floating point arithmeticis *very* expensive in terms of both code and data and should best be
avoided. Itisnominally based upon IEEE 754, though does not raise exceptions nor handle overflow
or special numbers (+/-Infinity, +/-NaN, -0, etc). A floating point valueis represented in 4 BYTEs.

A note needsto be made concerningthe BIT type. Inthe original JALlanguage, the BIT type acted
more like a Boolean --if assigned O, the value stored would be zero, if assigned any non-zero value,
the value stored would be one. This conventionis still used in JALv2.

However, JALv2 also understands BIT types more like C bitfields. If, instead of BITone uses the type
BIT*1, the value assigned would be masked appropriately (in other words BIT*1y = z translates
internally toBIT*1y = (z & 0x0001).

Eventhoughthe predefined largertypes use standard widths (2and 4), there isno such requirement
imposed by the language. If you need athree byte value, use BYTE*3. The only upper limitisthe

requirement that any value fit within one data bank.

Finally, BITand BYTE are distinct, sodefiningavalue of BIT*24 isnot the same as definingavalue of
BYTE*3!

2.2. Arrays

JAL allows one dimensional arrays of any non-bit type. These are defined during variable definition
using the notation:

VAR type '[' cexpr ']' id

This definesid as type with cexprelements. These are accessed using brackets. The elements are
numberedfromzero, sofor5 elementsthe accessorsare 0to 4.

Example:

VAR BYTE stuff[5], xx

XX = 2
stuff[0] =1
stuff(xx] = 2
xx = stuff[xx]

Note:Thereisno errorcheckingwhenanarray isaccessed with a variable. Inthe above example, if
xxis5 no error will be generated, but the results willnot be as expected.

2.3. Records

Records are special types, composed of fields which are built-in types, arrays, and/or otherrecords.
These are defined with:

RECORD identifier IS
typel*cexpr] 1d0 ['[' cexpr ']']

END RECORD
Once defined, the RECORD identifier can be use anywhere a simple type can be used. Each individual
fieldisaccessed using".'

Example:

RECORD eyeinfo IS
BYTE left
BYTE right

END RECORD

7
; a record can be initialized on definition as follows:
7

VAR eyeinfo eye = { 3, 4 }

14

; alternately, each field is accessed with the '.' operator:

eye.left =1
eye.right = 2

; A more complex example. This sets eyes[0] to {1,2},
; eyes[l] to {3,4} and eyes[2] to {5,6}:

&AR eyeinfo eyes([5] = { {1, 2}, { 3, 4}, {5 61} }

4

; Finally, nested records and arrays are supported

RECORD face r IS
eyeinfo eyes

BYTE nose
BYTE freckels[5]
END RECORD

VAR face r[5] = {
{1,213, 3, {4, 5, 6, 7, 8} },
t{2,121%, 3, {8 7, 6, 5 4

2.4. Variables

A variableissimply anidentifierthat holds avalue. These identifiers have types associated which
define how much space isrequired to hold the value. The following types are built-in:

The complete format fordefiningavariableis:

VAR [VOLATILE] [SHARED] typel[*cexpr] identifier ['[' [cexpr 1]
T "]

[{ AT cexpr ['":' bit] | var [':' bit] | "{' cexpril[','
cexprZ2...] '"}' | IS var }
[| | C’eXpr | l{’ Cexprll,l s ’}l | ||l|. .. T]

[',' identifier2...]

Thisis, by far, the most complex constructinall of JAL, so I'll describe it one piece ata time below.
Once variable definition is understood, everything else is easy!

VAR
Denotes the beginning of avariable definition.

VOLATILE
The VOLATILE keyword guarantees thatavariable thatis either used orassigned will not be
optimized away, and the variable will be only read (or written) once when evaluatingan
expression.
Normally, if avariable is assigned avalue thatis neverused, the assignmentisremoved and
the variable is not allocated any space. If the assignmentis an expression, the expression
will be fully evaluated. If avariable is used, but neverassigned, all instances of the variable
will be replaced with the constant O (of the appropriate type) and the variable will not be
allocated any space.

SHARED
Tells the compilerthatthis variable exists in shared memory, sothere is noneedto set bank
bits (14 bit cores), or the BSR register (16 bit cores).

type[*cexpr]

type isone of the predefined types (above). If type is BIT, BYTE, or SBYTE itcan be extended
using [*cexpr]. For BYTE and SBYTE, this means the variable will be defined asaninteger
using cexprbytes, e.g. WORDis simply shorthand for BYTE*2.

9

Iftype is BIT, the definition changes. A BITvariable, asdefinedin JAL, isreally of type
boolean. When assigned any non-zerovalue, it takes on the value of 1. Using the [*cexpr],
the definition changesto be more like aC bitfield: assignmentis masked. Forexample:

VAR BIT*2 cc

when assigningto cc, the assignmentis:

cc = (value & 0x03)

identifier
Anyvalid JALidentifier

['[cexpr]'T
Definesan array of cexprelements. The array index starts at 0 and continues through (cexpr -
1). cexprmust be >= 1. An array *must™* fit entirely within a single PIC data bank.

If cexprisommitted, the '=' term must exist and the size of the array will be setto the
number of initializers present.

BIT arrays are *not* supported.

AT cexpr["' bit]
Placesthe new variable atlocation cexpr. Ifitis a BIT variable, [":' bit] definesthe bit offset
with the location. Any location uses forexplicit placement will not be allocated to another
variable.

ATvar["' bit]
Places the new variable at the same location as an existing variable. Any location uses for
explicit placement willnotbe allocated to anothervariable.

AT {' cexprl[',' cexpr2...]'}
Places the new variable at multiple locations. On the PIC, many of the special purpose
registersare mirrored intwo or more data banks. Telling the compiler which locations hold
the variable allows itto optimize the dataaccess bits.

IS var
Tellsthe compilerthatthisidentifieris simply an alias foranother. This has been deprecated,
use "ALIAS identifierISidentifierl" instead.

‘=" expr
Shorthand assignment. The variable will be assigned expr.
=" exprl[',' expr2...]"}'
For an array variable, the elements will be assigned exprl, expr2, ...

For a variable array, this assigns each ASCll value between """ and "' to one element of the

constantarray. Unlike C, there isno terminating NUL.

10

For an array variable, the elements will be assigned one the ASCll values inside the quotes.
="abc" isequivalentto={"a","b", "c"}

'"identifier2...
Allows defining multiple variables with the same attributes:

VAR BYTE a,b,c

2.5. Constants

2.5.1. Unnamed Constants

An unnamed numericconstant has the type UNIVERSAL, whichis a 32-bit signed value. When avalue
of type UNIVERSALis usedin an operation, itis converted to the type of the other operand.

An exception to above is floating point constants have type FLOAT.
Numericconstants have the following formats:

12 -- decimal

0x12 -- hexadecimal

0b01 -- binary

0q01 -- octal

"a" -- ASCII
1.23 or 1.23e2 or 1.23e-2 -- FLOAT

An ASCll constant evaluatestothe first character except when used toinitializea constant or variable
array in which case each character is used as one entry.

The full format of a floating point constantis:
[+ -1###. [### [e[+]-]###]
For example:
VAR BYTE ch = "123" ''ch is set to '1'
VAR BYTE str[] = "123" ' str[0] is set to '1'
' str[l] is set to '2'

' str[2] is set to '3’

An ASCll constantallows the Clanguage escapingrules as follows:

11

Table 2-2. ASCII Constant Escaping

Sequence Value

"\ooo" octal constant

"\a" bell

"\b" backspace

"\f" formfeed

"\n" line feed

"\gooo" octal constant

"\r" carriage return

"\t" horizontal tab

"\v" vertical tab

"\xdd" hexidecimal constant

"\zbbb" “binary constant"

"\\" Asingle'\'
Constants otherthan ASCll constants may also contain any number of underscores ("_") which are
ignored, butare useful forgrouping. Forexample: 0b0000_ 1111
2.5.2. Named Constants
The complete formatfordefininganamed constantis:

CONST [typel[*cexpr]] identifier ['"[' [cexpr 1 ']1']
'='" { cexpr | '"{' cexprl[',' cexpr2...1"}" | '"'...'"""}
[',' identifier2...]

CONST

CONSTdenotes the beginning of a constant definition clause.

type[*cexpr]

Defines the type of the constant. If none is given, the constant becomes universal type which

is 32 bitsigned.

' [cexpr] T’

Definesaconstantarray (see array variable types). A constant array will not take any space
unlessitisindexed atleastonce with anon-constant subscript. On the PIC, constantarrays
consume *code* space, not *data* space, and are limited to 255 elements.

If cexprisommitted, the size of the array will be determined by the number of initializers
used.

'=' cexpr
For non-array constants this assigns the value to the constant.
="' cexprl[',' cexpr2...]'}
For arrays of constants this assigns the value to each element. There must be the same
number of cexprs as there are elements defined.

12

For an array of constants, this assigns each ASCll value between ""'and "' to one element of

the constant array. Unlike C, there is noterminating NUL.

2.5.3. String Literals (introduced with JALv2.4p)

String literals are enclosed in quotation markes""'...""'and can be used where everan array of
characters is allowed. The ASCIl constant escaping noted under, ‘Unnamed Constants,' appliesto
each character within the stringliteral.

Note that a stringliteral terminates with the first NUL characters (0x00).

2.6. Aliases

Aliases allow a multiple identifiers (variables, named constants, sub-programs) to referto the same
object.

The format fordefininganaliasis:

ALTIAS identifier IS identifier2
Oftenitisuseful toallow a variable or constant be referred to by multiple names. Forexample, if on
acertainprojectpin_alisa red LED, you might prefertorefertoitas RED_LED. That way if,on a

different project pin_a2isthered LED, you'd need only change the alias and everything elsewould
continue toworkfine.

13

Chapter 3. Operators,

3.1. Operators

Table 3-1. JALv2 Operators

Casting, Expressions, Casting

Operator Operation Result
COUNT returns the number of UNIVERSAL
elementsinanarray
WHEREIS return the location of an UNIVERSAL®
identifier
DEFINED determinesif anidentifier BIT
exists
("expr') Grouping Result of evaluating expr
-3 Unary - (negation) Same as operand
'4'3 Unary + (no-op) Same as operand
ik 1's complement Same as operand
e Logical. If the followingvalueis | BIT
0, the resultis 0, otherwise the
resultis1
'*35 Multiplication Promotion?
VAN Division Promotion?
'%'> Modulus division (remainder) | Promotion?
'+13 Addition Promotion?
-3 Subtraction Promotion?
'<<!' Shiftleft Promotion?
'>>'t Shiftright Promotion?
'<'3 Strictly lessthan BIT
'<="3 Lessor equal BIT
'=="4 Equality BIT
"1=" Unequal BIT
'>="3 Greateror equal BIT
'>'3 Strictly greaterthan BIT
‘&' Binary AND Promotion?
I Binary OR Promotion?
" Binary exclusive OR Promotion?

Ishiftright: If the leftoperandis signed, the shiftis arithmetic(sign preserving). If unsigned, itis a

simple binary shift.

2promotion: The promotionrulesare tricky, here are the cases:

o [feitheroperandis FLOAT, the resultis FLOAT.
e Ifone ofthe operandsis UNIVERSALand the otheris not, the resultis the same as the non-

UNIVERSALoperand.

e Ifboth operandshave the same signedness and width, the result is that of the operands.
e Ifboth operandshave the same width, and oneisunsigned, the resultis unsigned.
e Ifone operandiswiderthanthe other, the otheroperand will be promotedtothe wider

type.

14

3These operators allow FLOAT types.

“Floating point numbers should never be compared forequality due to the impreciseway in which
they are stored. Attempting to do so will resultin awarning from the compiler. Two different
operations which shouldyield anidentical mathematical result may compare unequal. The correct
way to compare two floating point numbers, say Aand B, is "abs((A - B)/B) < 1e-6' (floating point
values have anominal precision of 6- 9 digits).

>Keep in mind that multiplication and division, even between integertypes are very expensive
operationsin both code size and data size (see Chapter 11: Build-in Function).

®The result of WHEREIS depends upon the identifier used:

e A procedure orfunctionwill return the CODE address of the entry point.
e Anassemblylabel will returnthe CODE address of the label.

e Avariablewill returnthe DATA address of the variable.

e Asimple constantwill generateanerror.

e A constantarray depends uponthe processorfamily:

o 16-bit: returnsthe CODE address of the data.
o non-16 bit: returns the CODE address of the entry pointtothe lookup function.

3.2. Casting

Castingisthe operation of changing the type of a value. This can be necessary fora number of
reasons: when assigningalargervalue toa smallerone, say a WORD to a BYTE, the compilerwill
issue a warning. An explicit cast will eliminate that warning:

VAR WORD xx
VAR BYTE yy

’

4
14

14

the following assignment will issue:
warning: assignment to smaller type; truncation possible

Yy = XX

.
’

.
’

.
’

Yy

no warning will be generated below

= BYTE (xx)

In the first case, the compiler wants you to know there mightbe an issue (arathercommonone). In
the second case, you've explicitly told the compileryou know these types are different, butthatis

OK.

Anothercase where castingis necessary is to guarantee correct promotion during an operation. Take
the following:

VAR WORD xx
VAR BYTE yy

14
.
14

.
’

this is not likely to do what you expect

15

XX = yy * yy

:- this will generate the correct result

;x = WORD (yy) * WORD (yy)
Rememberthatan operatoronly seesitstwo operands, it has no othercontext. Say the value of yy is
255. In thefirst case xx will be assigned avalue of 1: the lower eight bits of the result. In the second

case, the value of yy is promoted to a WORD, so xx will be assigned 65025 which is more likely what
you would expect.

3.3. Expressions

An expressionissimply values (variable or constant) and operators. Forexample:

y = X

y=x+y

y = -x -y

y = (5+ (3 -2x)) / z

Please take time to look at the operatorand casting sections, as many bug reports have been
generated by a misunderstanding.

Like C, but unlike Pascal, variables of different types can be mixed freelyin an expression. In this
case, the promotion ruleslisted under"operators" are in effect.

16

Chapter 4. Flow Control

4.1. BLOCK

Syntax:
BLOCK
statement block

END BLOCK

Createsa new block. Any variables defined in this block go out of scope at the block. Mainly useful
with the CASE statement (below).

4.2. CASE

Syntax:

CASE expr OF

cexprl[',' cexprla...] ':' statement
[cexpr2|[',' cexpr2a...] ':' statement]
[OTHERWISE statement]

END CASE

expris evaluated and compared against each cexprlisted. If a match occurs, the statementto the
right of the matching cexpris executed. If no match occurs, the statement after OTHERWISE is
executed. If there isno OTHERWISE, control continues after END CASE. Unlike Pascal, the behavioris
completely definedif there is no matching expression.

Unlike C(butlike Pascal) there isno explicit break. Aftera statementis processed, control proceeds
past the END CASE.

Each cexpr must evaluate toa unique value.

Example:
CASE xx OF
1: yy = 3
2,5,7: yy = 4
10: BLOCK
yy = 5
zZ = 6
END BLOCK
OTHERWISE zz = 0
END CASE

Note that only one statementis allowed in each case, thus the reason for BLOCK as BLOCK...END
BLOCK is considered asingle statement.

17

4.3.FOR

Syntax:

FOR expr [USING wvar] LOOP
statement block
[EXIT LOOP]

END LOOP

statement_block is executed exprtimes. If USING varis defined, the indexis keptin var, beginning
with zero and incrementing towards expr. If varis not large enough to hold expr, a warningis
generated. If [EXITLOOP] is used, the loop isimmediately exited.

Note: expris evaluated once on entry to the FOR statement.

On normal exit, varis equal to expr. After, 'EXITLOOP,' var holds whatevervalueit had at the
beginning of the loop.

November 2010 -- a minorenhancement has been made atthe request of the users. If exprisa cexpr
and isone largerthan var can hold, the loop will be exited when varrolls overto zero. In this case, on
exitvarwill be zero.

Example:
VAR BYTE n
FOR 256 USING n LOOP
END LOOP
On exit, nwill be zero.
xx = 0
FOR 10 LOOP
xx = xx + 1
IF (xx == 5) THEN
EXIT LOOP

END IF
END LOOP

4.4. FOREVER

Syntax:

FOREVER LOOP
statement block
[EXIT LOOP]
END LOOP

statement_block is executed forever unless [EXITLOOP] is encountered, in which case the loopis

immediately terminated. Thisis commonly used for the main loop ina program because an
embedded program like this neverends.

18

Example:

XX = 5
yy = 6
FOREVER LOOP
READ ADC ()
CHANGE SPEED ()
IF (speed == 5) THEN
EXIT LOOP
END IF
END LOOP

45.1F

Syntax:

IF lexpr THEN
statement block
[ELSIF lIexprZ2 THEN
statement block]
[ELSE
statement block]
END IF

This creates a test, or series of tests. The statement_block underthe first lexprthatevaluatesto 1
will be executed. Any number of ELSIF clauses are allowed. If no lexprevaluatesto true and the ELSE
clause exists, the statement_block for the ELSE clause will be executed.

A special case of the IF statementis when any lexpris a constant 0. In this case, the statementblock

isnot parsed. This can be used forblock comments.

IF O

this is a dummy block that won't even be parsed!

END IF
Example:

IF x == 5 THEN
y =7

ELSIF x == 6 THEN
y = 12

ELSE
y =0

END IF

19

4.6. REPEAT

Syntax:

REPEAT
statement block
[EXIT LOOP]
UNTIL Iexpr

statement_block will be executed until lexprevaluatesto 1, or until [EXITLOOP] is encountered.
Example:

REPEAT
xx = READ ADC
UNTIL (xx < 5)

4.7. WHILE

Syntax:

WHILE lIlexpr LOOP
statement block
[EXIT LOOP]
END LOOP

statement_block will be executed as long as lexprevaluatestoa 1, or until [EXITLOOP] is
encountered. Thisis similarto REPEAT above, the difference being the statement_block of
REPEAT loop will always execute at least once, whereas that of a WHILE loop may never execute
(because the testisdone first).

Example:

WHILE no button LOOP
XX = xx + 1
IF (xx == 10) THEN
EXIT LOOP
END IF
END LOOP

20

Chapter 5. Other Keywords

5.1. ASSERT
Format:
ASSERT expr

Thisis only useful if the "-emu" compiler option has been used, otherwise itisignored. If exprresults
ina zerovalue, the emulatorwillstop at this point.

5.2. INCLUDE
Format:

INCLUDE filename
Thisinstructs the compilerto stop parsingthe currentfile, openand completely parse the include
file, the returntothis file onthe nextline. Note the included file must have an extension of '.jal' and
the filename may notbegin orend with a space.
Note that itis not possible toinclude the same file multiple times. Once afileisincluded, it willnot
be included again. Also be aware that the filename is taken literally —no transformis done onit. This
should be taken into consideration if you are writing a library as some filesystems are case-sensitive,
and others are not, so "MYLIBRARY" and "mylibrary" might be two differentfiles.

Example:

INCLUDE 16£877
5.3. Message generating

The following keywords generate amessage, justasifitcame directly fromthe compiler. Eachis
followed by a string which will be displayed as part of the message.

5.3.1. _DEBUG
Format:
_DEBUG '"' ... '"!
Generates adebugmessage. This will only be seenif the"-debug" compiler option has been used.
Example:

_DEBUG "this file is being deprecated”

21

5.3.2. _ERROR
Format:

_ERROR '"' ... '™
Generatesanerror message.
Example:

_ERROR "this function should not be used"

5.3.3. _WARN
Format:

CWARN '"toLL.orm
Generates awarning message.
Example:

IF !DEFINED (foo) THEN
_WARN "foo is not defined"”
END IF

22

Chapter 6. Sub-programs: Procedures and Functions

Syntax:

PROCEDURE identifier ['(' [VOLATILE] type { IN | OUT |
IN OUT } identifier2 [',' ...]1 '")' IS
statement block

END PROCEDURE

FUNCTION identifier ['(' [VOLATILE] type { IN | OUT | IN OUT }
identifier2 [',' ...] ")' RETURN type IS
statement block
END FUNCTION

The only difference between a PROCEDURE and a FUNCTION, isthe formerdoes not return a value,
while the laterdoes. The procedure identifier existsin the block in which the procedure is defined. A
new blockisimmediately opened, and all parameters existinthat block. A parameter marked IN will
be assigned the value passed when called. A parameter marked OUT will assign the resulting value to
parameter passed when called. While inasub-program, anew keywordisintroduced:

RETURN [expr]

When executed, the sub programimmediately returns. If the sub programisa FUNCTION, expris
required. Ifitisa PROCEDURE, expris forbidden.

A sub-programis executed simply by usingits name. If parameters are specified inthe sub-program
definition, all parameters are required, otherwise none are allowed. AFUNCTION can be used
anywhere avalueisrequired (in expressions, as parameters to othersub-programs, etc). Thereisno
limitto the number of parameters.

JALv2 isa pass by value language. Conceptually, an IN parameteris read once when the sub-program
enters, and an OUT parameteriswritten once when the sub-programreturns. Thisis notalways
desired. Forexampleif asub-program writes a string of characters to the serial port (passed as
parameter), only the last character written will be sent. Forthis case we need VOLATILE parameters.
These are eitherread each time used (IN) or written each time assigned (OUT). Thisis accomplished
using pseudo variables (see below). If the value passedis not a pseudo-variable, asuitable one is
created.

There are two ways to pass an array intoa sub-program:

PROCEDURE string write (BYTE IN str[5]) IS...
PROCEDURE String_write (BYTE IN str[]) IS...

The first follows the pass-by-value semantics noted above. An array variable of size 5, str, is allocated
inthe namespace of the procedure. Any callers must call with an array of exactly 5 bytes, whichis
copiedintothe local variable and used.

Alternately, the second version created a flexible array. This is pass-by-reference which means (1) the
amount of data space used forstris onlytwo or three bytes, and (2) any sized array can be passedin.
Thisis generally far more useful, and farless wasteful. The operator COUNT can be used to
determine the size of the array passedin.

23

Procedures and functions can be nested.
Example:

FUNCTION square root (WORD IN n) RETURN WORD IS

WORD result

WORD 1ix

ix =1

WHILE ix < n LOOP
n=n- 1ix
result = result + 1
ix = ix + 2

END WHILE

RETURN result
END FUNCTION
XX = square root (xx)

Recursionisfully supported but due tothe overheaditis discouraged.

24

Chapter 7. Pseudo-variables

Syntax:

PROCEDURE identifier "'" PUT ' (' type IN identifier2 ')' IS
statement block
END PROCEDURE

FUNCTION identifier "'"™ GET RETURN type IS
statement block

END FUNCTION

A pseudo-variable is asub-program, or pair of sub-programs that work as if they are variables. Ifa
'PUT procedure is defined, any assignment to identifier is replaced by a call to the identifier'PUT
procedure. Similarly, if a'GET functionis defined, any time the associated valueis usedisanimplicit
call to the function.

If both a 'GET and 'PUT sub-program are defined, the parameter type of the 'PUT must match the
return type of the 'GET.

Example:

FUNCTION pin'GET () RETURN BIT IS
return pin shadow
END FUNCTION

PROCEDURE pin'PUT(BIT in xx) IS
pin shadow = xx
port = port shadow

END PROCEDURE

pin = 5

25

Chapter 8. Interrupts

Syntax:

PROCEDURE identifier IS PRAGMA INTERRUPT [FAST]
statement block
END PROCEDURE

PRAGMA INTERRUPT tells JALthat this procedure can only be called by the microcontroller's
interrupt processing. Any number of procedures can be defined as an interrupt handler. When an
interruptoccurs, firstthe microprocessor state is saved, then control passesto the first procedure
marked as an interrupt handler. Control continues to passto each interrupt handleruntilthe last,
thenthe microprocessor state is restored and the interrupt ended. The programmeris responsible
for clearing whatever bits caused the interrupt to happen. A procedure marked asaninterrupt
handlercannot be called directly from elsewhere in the program. Beyond that, an interrupt handler
can do anythingany other procedure can do. The orderthe interrupt handlers are calledis
undefined, the only guaranteeis each handlerwill be called at each interrupt, and will only be called
once.

If an interrupt handler executes asub-program thatis also executed by the main body of the
program, that sub-program will be marked recursiveand incurthe recursion overhead eachtime itis
called.

If FAST is declared, the interrupt handler will only save the minimum amount of state necessary. This
must be used with great care -- although the microprocessor state is saved, state used internally by
the compileris not. Assuch, only a completely assembly sub-program should be used. Any JAL
statements mightinvalidatethe internal state of the compiler. If any interrupt handleris marked
FASTthenonly oneinterrupthandleris allowed.

26

Chapter 9. Tasks

Syntax:

TASK identifier ['(' parameter list ')'] IS
statement block
END TASK

JALv2 introduces the concept of TASKs which are a form of co-operative multi-tasking. Unlike
preemptive multi-tasking, where control passes from one task to anotherautomatically,

control will only pass when atask specifically allows it. Due to the architecture of a PIC, true multi-
taskingisvery difficult. Tasks can only be started by the main program, or within another task. Tasks
are started with:

START identifier [' (' parameter list ')']
When a task is ready to allow anothertorun, it executes:
SUSPEND

To end the task, simply RETURN or allow the control to passto the end of the task. If tasks are used,
the compiler must be passed the argument, "-task n," where nisthe numberof concurrentrunning
tasks. Rememberthat the main program itself is atask, so if you plan to runthe main program plus
two tasks, you'll need to passin, "-task 3".

Finally, only one copy of the body of a task should be run at a time. The followingwould be an error
because it attemptsto run two copies of task1 at the same time:

START taskl
START task?2

FOREVER LOOP

SUSPEND
END LOOP

27

Chapter 10. Assembly

When all else fails, one canresortto inline assembly. This can be in the form of a single statement:
ASM
or an entire block:

ASSEMBLER
statements

END ASSEMBLER
Usingassembly should be alastresort --itis needed only when eitherafeature is not possible using
JALv2 (forexample, the TRISand OPTION codes), orwhen speed is of the essence. JALv2includes the
entire assembly language setin the PIC16F87x data sheet, several instructions from earlier micro
controllers, and several common macros. There is some support forthe 16 bit keywords.

To guarantee the correct data bankis selected when accessing a file register, use one of the
following:

BANK opcode
Or
BANK f
The formertakes the file register from the command, the later takesitdirectly.
Similarly, to guarantee the correct page bitsare set (for GOTO or CALL), use one of the following:
PAGE opcode
Or
PAGE 1bl
Again, the formertakesthe label fromthe command, the later takesit directly.
Normally, the codestoset or clearthe bank or page bits are only generated when necessary. If the
bitsare alreadyinthe correct states, nofurthercommands are generated. If you need to guarantee

the codes are always generated, use the following pragmas:

PRAGMA KEEP PAGE
PRAGMA KEEP BANK

The former will keep any page bits, the laterand bank bits. These affect the entire sub-programin
which they are declared.

To declare a local label foruse in CALLs and/or GOTOs:

LOCAL identifier[',' identifier2...]

28

Once declared, alabelisinserted into the assembly block by makingitthe first part of a statement,
followedbya":"

identifier: opcode...
The available opcodes are listed below. Forafull description see the appropriate datasheet.

Note that when usinginline assembly you should not modify the bank or page registers, FSR, or BSR.
Ifthese are modified, itis the programmers responsibility to return themto their original states.

10.1. Available Op-codes

The following abbreviations are used:

b --bit number,0<=b<=7

d -- destination, 'f'or'w'

f --file registerorvariable

n -- literal value, 0<= n <= 255 unless otherwise noted
k --label or constant

Note that notall opcodes are available on all devices. Check the datasheet foracomplete
description.

addwff,d
addwfcf,d
andwff,d
clrff

clrw
comff,d
decff,d
decfszf,d
incff,d
incfszf,d
iorwff,d
movff,d
movwf f
nop
riff,d
rlcff,d
rincff,d
rrf f,d
rrcf f,d
rrncf f,d
subwff,d
swapff,d
xorwf f,d
bcf f,b
bsff,b
btfscf,b
btfssf,b
addlwn

29

andlwn

call k

clrwdt

goto k

iorlwn

moviwn

retfie

retlwn

return

sleep

sublwn

xorlw n

thlrd{* | *+ | *- | +*}
tblwt{* | *+ | *- | +*}
reset

option
trisn(5<=n<=9)

10.2. Common Macros

addcff,d
adddcff,d
b k

bck
bdck
bnck
bndck
bnz k
bz k

clrc
clrdc
clrz
[call k
lgoto k
movfw f
negff
setc
setdc
setz
skpc
skpdc
skpnc
skpndc
skpnz
skpz
subcf f,d
subdcff,d
tstf f

30

10.3. Data Directives

The following allow datato be directly inserted into the code area. Retrieving these datais chip-
specific. Also, as the data go directly into the program memory, the amount of space actually usedis
chip specific.

Below, the term list is a comma separated list of constants or strings.

db list
Inserts a list of bytes, one per program word.

dw list
Inserts a list of words. On 12 & 14 bit cores each word can be 14 bits (0..8191), whereason
16 bit cores each word can be 16 bits (0..65535).

ds list

Pack two 7-bit valuesinto a program word. Not necessary on the 16 bit cores.

31

Chapter 11. Built-in Functions

JALv2 attempts to be a minimal language with most complex operations done with sub-programs,
howeversome functions simply cannot be efficiently supported externally.

11.1. Multiplication, Division, Modulus Division

Multiplication, Division, and Modulus Division are internal mainly becausethere is nowayto
predetermine the size of the operands. Note that unlike the other operators which are done inline,
these are function calls and require one stack entry when used!

A secondreason for havingthese builtinisthe optimizer -- when a multiplication ordivision by 1is
done, the operationisignored. When a multiplication or division by a power of two is done, the
resulting code is performed using shifts instead.

For both of these operations, the code generated will be that required forthe largest operands
unless -fastmathis passed to the compiler.. Forexample, if the operation occurs only between two
BYTEs, the 8-bit routine will be generated. If it occurs between BYTEs and WORDs, the 16-bit routine
will be generated.

If -fastmathis used, a differentfunction will be generated for each argument type.
The compilerkeeps track of the last operation, soif you find yourself needing both the division result

and the remainder of, acertain operation, make sure to put the assignments close together, thus
savinga function call:

o°

= x 10
= x 10

will onlyresultinone call tothe division -- the assignment to r will be a simple assignment.

11.2. Floating Point Operations

Most floating point operations are done via function calls because of the size of the code generated,
so at leastone stack entry will be used peroperation. For multiplication and division, two stack

entriesare required becausethese rely on the integer routines.

Operationsthatdo not require afunction call include: multiplication or division by a power of 2,
assignment from a constant.

11.3. usec_delay(cexpr);

_usec_delay(cexpr) is useful when an exact delayisrequired. It generates code thatis guaranteed to
delay a given number of micro-seconds. Thisis done usingloops with one, two, orthree variables,
and no-opinstructions as necessary.

For usec_delaytoworkcorrectly, interrupts must be disabled, and 'PRAGMA TARGET CLOCK' must
beissuedtosetthe system clock speed.

32

Note that _usec_delay()willgeneratedelays up to 4,294.967295 seconds (or~71.5 minutes), this
isn'treally the best use of space. On a 20MHz 16f877 this required 1043 instructions.

Thisis typically used for delays of afew 10s or 100s of uSec.

33

